
Figure 1: Scene complexity stability range.

Scene Complexity: A measure for real-time stable haptic applications

Eric Acosta, Bharti Temkin
Department of Computer Science, Texas Tech University

Bharti.Temkin@coe.ttu.edu

Abstract
 We discuss real-time issues of scene-complexity in order to frame a technical envelope for stable haptic
applications. How large a scene can a haptic application support? Specifically, we try to determine the
largest stable haptic scene possible when GHOST is used to develop an application. The scene consists of a
number of non-overlapping primitives or polymesh objects. The scene complexity is measured as a number
of primitive objects or polygons in polymesh objects that allow stable haptic interactions.
 The initial data collected indicates that earlier versions of GHOST allow for more complex scenes.
Each later version seems to reduce the number of objects that can be included in a scene. For example,
Version 1.2 allows for inclusion of 1100 non-overlapping spheres in a stable haptic application. Version 2.0
allows only 770 (almost 30% less) such objects, while version 3.0 allows only 600 (almost 45% less). The
system used for data collection is a Pentium III 500 MHz computer with 256 MB of RAM. This machine
has an nVidia Riva TNT2 Ultra video card with 32 MB of memory and runs Windows NT Workstation 4.0
with Service Pack 6.0.
 In order to quantify and understand these observations, we have developed an application that estimates
the distribution of resources used within the haptic loop; the fractions used by collision detection, graphics,
and haptic processes. This study provides a method for performance analysis of haptic systems. Scene
complexity plays a key role in the creation of haptic applications by providing critical data needed to
estimate the feas ibility and performance limits for generic haptic environments. It thus should have a broad
impact on the design of haptic applications.

1. Introduction

 Scene complexity is a measurement on how complex a scene can get and still allow for stable
haptic interactions. The real-time performance is typically reduced in proportion to the increase in
the complexity of the scene. In fact, it is well known that the time to compute haptic interactions
increases with the number of polygons. The approach taken in previous work was to make the
haptic servo loop rate essentially independent of the number of polygons [1]. However, this
invariance is obtained only after the contact is made with an object and while the object is being
touched in the neighborhood of the proxy, while the proxy remains inside the object, making this
an efficient haptic rendering technique for a single polymesh object. In this paper, the scene
complexity is measured as a number of primitive objects or polygons in polymesh objects. By
understanding the limits imposed by the complexity of the scene, we can estimate the feasibility
and performance limitations of generic haptic environments.
 First, we consider the greatest
lower bound (GLB), the highest scene
complexity for which the application
always runs with stability and no
errors. Next we consider the least
upper bound (LUB), where some
instability and errors are allowed to
occur. When the number of objects is
between GLB and LUB the application runs some of the times and produces errors or instabilities
at other times. When the complexity exceeds LUB of the scene, the application produces errors
instantly after haptics is initialized. This establishes a scene complexity stability range for haptic
applications, as shown in Figure 1.

Figure 2: Spheres in a
3x3x3 (x,y,z) fashion.

Figure 3: Sample scene graph representation.

Figure 4: Avg Hload for GHOST v3.0

0

0.5

1

A
vg

.h
lo

ad

6005123432161256427860051234321612564278

boxes (left) and spheres (right)

Avg Hload for boxes/spheres for GHOST v3.0

G_NT

G_T

NG_T

NG_NT

2. Primitive Objects: Spheres and Box complexity tests

 To establish the scene complexity, our application allows a
tester to specify the number of primitive objects (in the x, y, and
z directions) in the scene. The application automatically creates
and spaces the objects to prevent them from overlapping as
shown in Figure 2. The use of non-overlapping objects
eliminates other factors affecting haptic load (hload) [2]. Hload
is the time required to complete a haptic loop. Our application
records the hload data with 10-3 ms precision and stores it in a
file. In order to estimate the time distribution of the graphics,
haptic, and collision detection tasks [3] within the 1 ms haptic
loop, hload can be measured in several modes: touching (T) or
not touching (NT) an object, graphics on (G) or off (NG), and
removing geometry from the haptic scene graph (NH). By
removing the geometry branch “hapticScene”, as seen in Figure
3, the geometry can be eliminated from the haptic scene graph. The NH mode represents the time
required to perform other duties of the haptic loop, such as the device position query and the
scene graph traversal, without having to perform any collision detection on the geometry objects

themselves.
 The test data was collected five times
for a combination of modes between G or
NG, T or NT, and NH (G_T, G_NT,
NG_T, NG_NT, G_NH, NG_NH).
Starting with 8 (2x2x2) objects, the
number of objects is increased by one in
each direction (e.g. next test has 9(3x3x3)
objects), until an error is generated for
exceeding the 1 ms time constraint of the
haptic duty cycle. At this stage, the
number of objects is slowly decreased to
identify the GLB. Next, the number of

objects is increased to find the LUB, a point at which the application instantly produces an error.
 Tests were conducted using three different versions of GHOST (1.2, 2.0, and 3.0) to evaluate
performance changes from version to version. The GLBs and LUBs for the different versions are
summarized in Table 1. The GLB between version 1.2 and 2.0 is reduced by about 30% and
reduced by another 22% between versions 2.0 and 3.0 for spheres. Test results for version 3.0 are
displayed in Figure 4. From the tests, we calculated that on average displaying graphics
increased the hload by about 2-5% and touching an object increased it by about 7-18%. Our test
results indicate that earlier versions of GHOST allowed for more complex scenes. Each

subsequent version reduced
the number of objects that
could be included in the
scene for a stable haptic
application. The GLB
between versions 1.2 and 2.0
is reduced by about 27% and
is further reduced by 25%
between versions 2.0 and 3.0
for boxes. In general our test
show that hload increases

fairly linearly as objects are added to the scene
graph for every version of GHOST. Clearly,
overhead was introduced from version to version.
In case of no graphics and no haptic scene
(NGNH), the average hloads were .05ms, .08ms,
and .09ms for versions 1.2, 2.0, and 3.0
respectively. The data represents the time
required to perform basic duties of the haptic loop,
such as device position query and scene graph

traversal for nodes other than geometry.
 The hload percentage for collision detection is about 82-83% for spheres and 89-90% for
boxes, for graphics it is about 3% for both spheres and boxes, and for touching an object it is
about 11-13% for spheres and 6-8% for boxes.

3. Polymesh objects complexity tests

 For a single polymesh object, a box made up of length,
width, and height segments was used. These segments
define the resolution of the object and determine the
number of polygons that form it. The number of vertices
(nv) and faces (nf) can be calculated as follows, where l, w,
and h are the number of length, width, and height segments
respectively:
 nv = 2? [(l+1)(h+1) + (w-1)(h+1) + (w-1)(l-1)]
 nf = 4?[(l?h) + (w?h) + (w? l)]
Figure 5 is a wire frame rendering of the box showing how
the object is made of triangular polygons. Starting with a
10x10x10 segment (602 vertices, 1200 polygons) box, the numbers of segments (length, width,
and height) are increased by 10 for each test.
Figure 6 displays the average results of five test runs with GHOST version 3.0. According to
these results, the hload varied by very little when the polygon count increased for a single object.
However, when polygon counts exceeded about 120k, GHOST started to produce random errors,
even though hload was under 0.2ms. From these results, for a single object with no overlapping
polygons, we found the GLB and LUB to be 120k and 235k polygons respectively.

 For multiple polymesh
objects, the number of
polygons is kept consistent
with each increment step in the
previous test. Multiple
10x10x10 segment boxes, each
containing 1,200 polygons, are
used to form the polygon count
for each test run. The vertex
count was greater in the
multiple polymesh objects test
than in the single polymesh

object test by 2?(N-1) vertices, where N is the number of boxes. The increase in hload is
relatively linear as objects are added to the scene, Figure 7. Further testing gave the GLB and
LUB to be 35 objects (42k polygons) and 49 objects (58.8k polygons) for these polymesh objects
with non-overlapping polygons. The limit of 1ms was exceeded for 49 objects, therefore not
allowing for the true value to be recorded. However, we did notice that with only 35 objects, the

Version Object GLB LUB
Box 1100 1188 1.2
Sphere 1100 1200
Box 800 847 2.0
Sphere 770 847
Box 600 729 3.0
Sphere 600 729

Table 1: GLB and LUB for GHOST versions

Figure 6: Avg test results for increasing polygons for one object

Average Haptic Load - 1 Box Varying Polygons

0.1

0.11

0.12

0.13

0.14
0.15

0.16

0.17

0.18

10 20 30 40 70 80 90 100 110 120
LWH Segments for Model

G-T

NG-T

G-NT

NG-NT

Figure 5: Polymesh box

number of polygons from the single
polymesh object test was reduced
from 120k to 42k in the multiple
polymesh objects test. Even with an
additional 78k polygons the
maximum hload was about 80%
less.
 We estimate that on the average,
collision detection for the polymesh
objects is about 71-77%, while
graphics is about 2-8%, and

touching the object is about 19% of the hload. Tests also showed that the graphics increased
hload dependent of the number of polygons. Touching the polmesh, however, raised hload on
average by about 26%.

4. Conclusion

 In this paper, we addressed scene complexity issues based on the maximum number of
primitive objects as well as the maximum number of polygons for single and multiple polymesh
objects that allow stable haptic interactions when using GHOST. We discussed the idea of
specifying a scene complexity stability range. This range was defined by the greatest lower
bound (GLB) and the least upper bound (LUB). GLB is the highest scene complexity for which
the application always runs with stability and produces no errors. The LUB is a point at which
the haptic application will no longer run and produces errors instantly after haptics is initialized.
When the scene complexity is between GLB and LUB the application runs, but is unstable and
prone to errors. We were also able to estimate the percentage of hload used for the collision
detection, graphics, and user touching an object.
 Though these initial tests gave us complexity bounds for some haptic applications, more tests
need to be performed in order to estimate the feasibility and performance expectations for a
general haptic environment that involves many other levels of complexity. For example, other
tests results indicate that hload increases if the point of contact is within multiple bounding boxes
and increases even more if the point is touching multiple objects. Tests also show that there can
be different hloads within a single polymesh object, depending on its topology (eg. corner points,
overlapping polygons, etc.). Understanding scene complexity limits plays a key role in creation
of haptic applications by providing critical data needed to estimate the feasibility and
performance for generic haptic environments.

5. References

[1] Ho, C., Basdogan, C., Srinivasan, M.A., 1999, "An Efficient Haptic Rendering Technique for
Displaying 3D Polyhedral Objects and Their Surface Details in Virtual Environments", October 1999 Vol.
8, No. 5, pp. 477-491, Presence: Teleoperators and Virtual Environments.

[2] Acosta, Eric J., Haptic Virtual Environment, M.S. Thesis, Computer Science Department, Texas Tech
University, May 2001.

[3] Farida Vahora, Bharti Temkin, Thomas M. Krummel, Paul J. Gorman, “Development of Real -Time
Virtual Reality Haptic Application: Real-Time Issues”, 12th IEEE Symposium on Computer-Based Medical
Systems - CBMS 1999, June 18-20, pages 290-295, ISBN 0–7695–0234–2

[4] GHOST Software Developers Toolkit Programmers Guide, SensAble Technologies, Inc.

Avg Haptic Load - Varying Number of Boxes

0

0.2

0.4

0.6

0.8

1

1 4 9 16 49
Number of 10x10x10 Boxes

A
vg

. H
lo

ad
 (

m
s) G-T

NG-T

G-NT

NG-NT

Figure 7: Avg test results for increasing number of objects

